- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Scholtz, Jakub (2)
-
Adams, Todd (1)
-
Adersberger, Michael (1)
-
Alimena, Juliette (1)
-
Alpigiani, Cristiano (1)
-
Apresyan, Artur (1)
-
Bainbridge, Robert John (1)
-
Batozskaya, Varvara (1)
-
Beacham, James (1)
-
Beauchesne, Hugues (1)
-
Benato, Lisa (1)
-
Berlendis, S. (1)
-
Berlingen, Javier Montejo (1)
-
Bhal, Eshwen (1)
-
Blekman, Freya (1)
-
Borovilou, Christina (1)
-
Borsato, Martino (1)
-
Boyd, Jamie (1)
-
Brau, Benjamin P. (1)
-
Bryngemark, Lene (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> Cosmology may give rise to appreciable populations of both particle dark matter and primordial black holes (PBH) with the combined mass density providing the observationally inferred value ΩDM≈ 0.26. Early studies highlighted that scenarios with both particle dark matter and PBH are strongly excluded byγ-ray limits for particle dark matter with a velocity independent thermal cross section 〈σν〉 ~ 3 × 10−26cm3/s, as is the case for classic WIMP dark matter. Here we examine the limits from di useγ-rays on velocity-dependent, including annihilations which arep-wave with 〈σν〉 ∝v2ord-wave 〈σν〉 ∝v4, which we find to be considerably less constraining. This work also utilizes a refined treatment of the PBH dark matter density profile. Importantly, we highlight that even if the freeze-out process isp-wave it is typical for (loop/phase-space) suppresseds-wave processes to actually provide the leading contributions to the experimentally constrainedγ-ray flux from the PBH halo.more » « less
-
Alimena, Juliette; Beacham, James; Borsato, Martino; Cheng, Yangyang; Vidal, Xabier Cid; Cottin, Giovanna; Curtin, David; De Roeck, Albert; Desai, Nishita; Evans, Jared A.; et al (, Journal of Physics G: Nuclear and Particle Physics)Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity ‘dark showers’, highlighting opportunities for expanding the LHC reach for these signals.more » « less
An official website of the United States government
